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Abstract

This work explores the use of foot gestures for locomotion
in virtual environments. Foot gestures are represented as
the distribution of plantar pressure and detected by three
sparsely-located sensors on each insole. The Long Short-
Term Memory model is chosen as the classifier to recognize
the performer’s foot gesture based on the captured signals
of pressure information. The trained classifier directly takes
the noisy and sparse input of sensor data and identifies seven
categories of foot gestures (stand, walk forward/backward,
run, jump, slide left and right) without the manual definition
of signal features. This classifier is capable of recognizing the
foot gestures, even with the existence of large sensor-specific,
inter-person and intra-person variations. Results show that
an accuracy of ~80% can be achieved across different users
with different shoe sizes and ~85% for users with the same
shoe size. A novel method, Dual-Check Till Consensus, is
proposed to reduce the latency of gesture recognition from 2
seconds to 0.5 seconds and increase the accuracy to over 97%.
This method offers a promising solution to achieve lower
latency and higher accuracy at a minor cost of computation
workload. The characteristics of high accuracy and fast
classification of our method could lead to wider applications
of using foot patterns for human-computer interaction.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction techniques—Gestural
input; Human-centered computing—Human computer inter-
action (HCI)—Interactive systems and tools—User interface
programming
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The rapid development of consumer-level devices, such as
Oculus and HTC Vive, leads to increasing popularity of
Virtual Reality (VR) among the public. The immersion
in virtual environments (VEs) offers unique experiences to
users and shows its potential in the fields like education,
broadcasting, entertainment, etc. The capability of freely
navigating in a large VE is a critical function in interactive
VR applications. A recent work [40] reviewed the efforts to
perform natural walking in VEs. Compared with walking-in-
place and joystick-based locomotion, real walking serves as
a better mode for virtual locomotion in terms of simplicity,
straightforwardness, naturalness [15,40,59].

However, it is a challenging task to map the locomotion in
the real world (RW) to that in the VE. The first challenge is
to capture the locomotion pattern in the real world. Standard
motion capture systems, such as Vicon, are expensive and
require additional efforts in setting up the external devices
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(specialized cameras and tracking suits). Although alternative
solutions, such as Kinect, Oculus Quest and Vive Focus, allow
fast setup and accurate tracking, users are still physically
constrained in a limited space and may not be able to use such
devices in challenging scenarios such as outdoor environments.
The second challenge is to define the mapping from the
captured posture in RW to the referent action [18] in the
VE, particularly, in the case of walking-in-place where there
are no direct mapping rules. Researchers have proposed
various walking-in-place methods (GUD-WIP [64], LLCM-
WIP [17] and SAS-WIP [8]), or hybrid methods (Legomotion
[6]), to allow users to explore a large VE by walking in a
relatively small RW. However, existing methods generally
require manual-tuning of parameters to identify different
motion categories and are limited to most-common gestures
(walking-stopping). Therefore, it is still important to develop
alternative methods to allow intuitive exploration in the VE.

Inspired by the fact that we wear shoes to facilitate long-
distance locomotion, this work uses sensors in the insoles
to detect the plantar pressure and capture the locomotion
patterns in RW (Figure 1). Although foot gestures serve as a
promising solution for interaction (see [61] for a comprehen-
sive review in this domain and some recent works [19,31,55]),
it is significantly difficult to interpret the signal of pressure
distributions given a large group of users and a wide range of
locomotion patterns. The reasons are threefold. Firstly, there
exist sensor-specific variations in the manufacturing pro-
cess, which means two sensors may return different pressure
values even though they are pressed with the same force. Sec-
ondly, we observe largely inter-person and intra-person
variations, which means such signals of the same pattern
may vary significantly for different persons, or even for the
same person when making different attempts. Lastly, using
an excessive number of sensors may introduce redundant
information and increase the manufacture and computing
cost, while using a minimal number of sensors may require
longer sequences to accurately identify the locomotion pat-
tern. Therefore, developing a stable and fast classification
algorithm to handle noisy and sparse data is a non-trivial
task.

The goal of this study is to develop novel techniques with
sparse distribution of plantar pressure and achieve accurate
and fast classification of foot gestures for virtual locomotion.
We used consumer-level hardware (for the retail price of
30 USD), with three pressure sensors sparsely embedded in
each insole. This classifier should be robust against noises
caused by the sensor and individual variations, and capable
of identifying the accurate foot patterns within a short time
frame. In addition to well-investigated walking/stopping
patterns, we also aim to explore a wider range of other
gestures for intuitive interaction in VE. To this end, we made
the following contributions:

¢ We develop a pattern classifier, based on the Long Short-
Term Memory (LSTM) network, which is generalized
across different sensors and individuals. This classifier al-
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Figure 1: (left) user performing the walking with the device.
(middle) shoes with smart insoles. (right) smart insoles
with the illustration of the location of pressure sensors and
microchip.

lows users to stand, walk forward/backward, run, jump,
slide left and right, without the manual definition of sig-
nal features. This is, to the best of authors’ knowledge,
the state-of-the-art numbers (N =T7) of foot patterns,
considering the large sensor-specific, inter-person and
intra-person variations.

e We propose a novel method, Dual-Check Till Consen-
sus (DCTC), to make fast and accurate decisions on ges-
ture recognition. In comparison to the standard LSTM
network, DCTC achieves lower latency and higher ac-
curacy at a minor cost of computation workload. The
time latency is reduced from 2 seconds of the standard
LSTM to 0.5 seconds while the accuracy is improved
from 85% to 97.1%.

e« We conduct a systematic evaluation of our method, by
comparing the existing methods in gesture recognition
(the standard LSTM, Hidden Markov Model, Dynamic
Time Warping). The results show that our method
advances the state-of-the-art performance in terms of
both accuracy and time cost.

2 Related Work
2.1 Techniques for Virtual Locomotion

Virtual locomotion refers to the functionality of allowing
users to navigate in 3D virtual environments, which critically
affects the user’s sense of presence. We here focus on existing
techniques using body (in particular, foot) movements to
trigger virtual locomotion and exclude the discussions on us-
ing conventional devices (such as joy-stick, mouse, keyboard
or touch screen). So far researchers have proposed the tech-
niques of real walking [15,53,59], walking-in-place [8,17,64,69],
or hybrid solutions of real walking and walking-in-place [4, 6].
Experiments reveal the subject preferences of virtual locomo-
tion techniques, in the orders of real walking, walking-in-place,
flying and using a button-like controller [51,56,59]. Although
real walking [59] offers users with high fidelity of presence and
immersion, it is limited by the space size of the real world.
The technique of redirected walking [15,53] introduces sub-
tle adjustments to the virtual path by translation, rotation,
and curvature gains without affecting the user’s perception.
These adjustments allow users to walk in a substantially
larger virtual space in a relatively smaller physical world.
Walking-in-place enjoys its advantages in allowing users
to navigate in a large virtual space within a physically-
constrained real world. Advanced omni-directional treadmill
has been developed to allow users to walk in all directions,
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however, the high price of this device indicates that it is cur-
rently limited to professional scenarios, rather than consumer-
level applications. So far, representative walking-in-place
techniques include GUD-WIP [64], LLCM-WIP [17], SAS-
WIP [8]), or hybrid methods (Legomotion [6]). In addition to
the use of the foot, virtual locomotion has been achieved with
non-critical body parts, including tapping [37], hip bending
and leaning [20, 23,47], shaking-head [57], arm swing [38].
Researchers used other body-relevant devices, such as the
Wii balance board [14] or human-scale joystick [29]. Re-
searchers also explored the use of hip bending and leaning,
for the purpose of ground navigation in scenarios of large
display [20] and head-mounted display [47]. Leaning-based
motion cueing interfaces mentioned in [22,63] were also de-
signed for an immersive experience in 3D virtual space. We
kindly refer our readers to recent surveys [39,40] on details of
natural walking in virtual reality. Another research direction
is to reconstruct 3D human pose [21,35,72] and achieve pose
estimation [62] using body-worn IMUs. Researchers also
proposed a hybrid character control interface mapping the
user’s pose to the character [36]. The implementation of ex-
isting methods for walking-in-place involves manual efforts of
tuning the threshold values for recognizing different actions,
such as start and stop. This process can be labor-intensive if
the number of gestures increases. Our work automatically
identifies the signal features embedded in a large database
and avoids the manual tuning of model parameters for the
purpose of gesture classification.

2.2 Applications of Foot Interactions in Virtual Reality

Foot interactions in VR cover a wider range of channels,
in addition to the aforementioned virtual locomotion. Au-
dio and haptics are two common interactions explored in
existing studies [41-44, 46]. Researchers developed shoes
with pressure sensors, actuators, and markers and provided
physically-based audio-haptic feedback to users when they
are virtually walking on different surfaces [42]. This study
reveals that although auditory and haptic feedback leads to
a more realistic experience (reported by participants), this
claim is not supported by experimental data and question-
naires. A pair of haptic shoes, named RealWalk [52], adopted
MR fluid (Magnetorheological fluid) actuators to simulate
four different scenarios: grassland, snow, concrete floor, and
dry sand. MR fluid actuators adaptively adjust the viscosity
of MR fluid by varying the magnetic field intensity based
on the type of materials in virtual ground surfaces and the
foot pressure distribution. Researchers also explored the use
of foot gestures [28], or in combination with hand [27], as
the interaction technique for mobile games. The information
of foot pressure captured from a sensor pad is also used to
interactively control avatars [71]. Some locomotion devices
for Virtual Reality such as Cyberith Virtualizer [10] and
Virtuix Omni [5] offer a new form of treadmills. They are
based on the low friction principle and leverage the sensor
system to detect user’s movements. It is a kind of solution for
intuitive player motion in VR gaming, allowing users to cre-
ate interactive animations without the cost or inconveniences
of a full-body motion capture system.

Another application of foot patterns in the VR domain
is an unobtrusive and immersive mobility training system
for stroke rehabilitation called VRInsole [45]. This system
utilized the patients’ motion information collected from the
smart insole and thus provided the input for the VR appli-
cation to perform corresponding exercise animations. Re-
searchers [27] also designed an immersive football game on
the platform of mobile phones and used hand/foot gestures to
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interact in this VE. A proof of concept, named as ShoeSole-
Sense [30], was developed which enabled location indepen-
dent hands-free interaction through the feet. This device
allows movement control, including moving straight, turning
and jumping, in a virtual reality installation. Researchers
conducted user experiments to find out the best areas for
measuring pressure. Our work differentiates from existing
works in that we focus on accurate and fast classification of
foot patterns across different individuals, and apply such an
interaction technique for exploring the 3D VEs.

2.3 Hardware and Software for Foot Pattern Recognition

In order to capture foot patterns, popular solutions of sensor
set-up include embedding the pressure sensors on the insole,
attaching an accelerometer for measuring linear acceleration
and a gyroscope for measuring orientation and angular ve-
locity. Researchers embedded 48 pressure sensors into the
insole to monitor the walking pattern and acquired the in-
formation including the walking speed, stride length, and
the cadence during the locomotion [68]. FootStriker [13], an
EMS-based foot strike assistant, used force-sensitive resistors
(FSR) in the insole to detect the running style of users and
Electrical Muscle Stimulation (EMS) as a real-time assistant
to intuitively aid the runner in adapting a mid- or fore-foot
stride pattern. Researchers also utilized other devices, such
as Kinect, to track the foot gestures for Desktop 3D inter-
action [50,60]. An in-shoe electronics system is developed
to monitor temperature, pressure, and humidity for patients
with diabetes and peripheral neuropathy [34].

Continuous collection and transmission of the pressure in-
formation require a substantial degree of power supply, which
greatly limits the wide applications of the smart insole. The
straightforward solution is reducing the sampling rate at the
expense of data accuracy. More recent research [66] increased
the battery life from 2 to 10 hours with an energy-efficient
adaptive sensing framework. Their solution is adaptively
reducing the sampling density while preserving information
fidelity based on the gait cycle analysis.

As the technology of sensor manufacture gradually ma-
tures, researchers and entrepreneurs have made remarkable
progress in offering commercial products of smart insoles
to the public. The choices include Sennopro InsoleX [2],
StepRite Insole [49], Brilliant Sole [1] for various purposes
of rehabilitation and training. Instead of proposing a new
system and duplicating the efforts of hardware design, our
work uses an existing commercial product and focuses on
developing a capable classifier with high accuracy and low
latency. Common algorithms in existing works of foot pattern
recognition include peak detection and signal denoising. The
peak detection method [12,33,58] is widely used to detect
the timing of foot strike and liftoff and calculate the time
difference between two consecutive steps. Researchers com-
pared the average pressure level between the left and right
feet and evaluated the rate of the distortion in walking [12].
The location, velocity, and trajectory of Center-of-Pressure
are computed as weighted formulas of the original pressure
distributions [26]. A major issue of the existing methods
in recognizing foot gesture is the challenge to tackle the
variations from different persons and sensors. Our work
uses the deep neural network to improve this capability of
generalization.

3 Method Overview

The goal of this work is to develop a method to accurately
and fast classify foot gestures for virtual locomotion. This
section first explains the hardware and software implementa-
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tion of our framework, followed by explanations on selected
gestures in this work. Section 4 presents a novel method,
DCTC, which improves the standard LSTM model by reduc-
ing the time latency and increasing the classification accuracy.
The validation experiment and its findings are presented in
Section 5. We compared the performance of our work with
state-of-the-art and discussed the limitations of our work
as well as our future research directions in Section 6. Sec-
tion 7 concludes this work and points out its potential in VR
applications.

3.1 Hardware and Software Implementation

We use the smart insole from Podoon Technology Ltd. to
complete this research. Their product is originally designed
for athletes and enthusiasts of running, to record and improve
their running gait using the information of plantar pressure
distribution. The retail price of the insole is 30 USD, which
costs far less than the specialized treadmill platforms for
VR interaction or even the consumer-level devices for body
tracking such as Kinect. Each insole has three pressure
sensors and one onboard processing chip, with their locations
indicated in Figure 1.

The onboard chip uses the technology of Bluetooth Low
Energy and sends the pressure information to other processing
devices (such as a smartphone). Each sensor returns an
integer value within the range of [0,255] to indicate the
magnitude of the foot pressure. The sampling frequency
of the pressure information is 50Hz and the transmission
frequency from the onboard chip is 10Hz. The battery life is
1000 hours of running, as reported by the manufacturer.

The training and testing of the classifier are conducted on
a server computer with Intel Core i7 (6 cores), 16G memory
and NVIDIA GTX 1080Ti. The server computer receives the
sensor data, conducts the prediction and sends the results
to the VR helmet. All data are transmitted based on TCP
protocol. A unity3D application is developed to render the
virtual scene on Pico Goblin, which is an all-in-one VR device
with Qualcomm Snapdragon 820 CPU and 3G memory. All
source code and dataset of this work can be found in the
supplementary file.

3.2 Selection of Foot Gestures

Foot gestures, as a proxy for walking-in-place, have been
extensively investigated in existing works [8,17,39,40, 64, 69).
An elicitation study was performed to provide thorough
understanding of foot gestures which are linked with the
corresponding actions in three conditions: standing up in
front of a large display, sitting down in front of a desktop
display and standing on a projected surface [18].

Researchers define Referents [18] as common actions of
an avatar in VE, which our proposed gestures (in RW) are
planned to trigger. The selected referents are based on exist-
ing works and set as: walking forward/backward, running,
jumping, sliding left/right [18,25].

We follow the mapping from gestures to referents as pro-
posed in a most recent work [18] (shown in Figure 2). In
the existing work [18], participants are confined on a limited
horizontal surface, which implies the use of walking-in-place.
Different from this work, we decide to offer two choices to walk
forward in the VE. One option is real walking (Figure 2(b)),
which ensures the most realistic locomotion experience and
is suitable for scenarios with sufficient space. Another option
is walking-in-place (Figure 2(a)), which is suitable for real
environments with limited space. This hybrid approach offers
users flexibility to choose real walking when the perceived im-
mersion is preferred and the size of physical space allows, but
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(a) walking-in-place

(b) real walking (c) walking backward

(d) running

(e) jumping (f) sliding left (g) sliding right

Figure 2: Motion patterns to trigger the referents of walking forward, backward, running, jumping, sliding left and right in VE.

walking-in-place when there is no sufficient physical space.
It is worth noting that the focus of this work is to develop a
pattern classifier to identify each gesture, instead of exploring
the best gestures to trigger the corresponding referents. Se-
lections of alternative gestures can be seamlessly integrated
into the workflow of our method.

4 Gesture Classifier Training
4.1 Data collection

Age and Familiarity of Participants
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Figure 3: Age and familiarity score of participants in the

session of data collection.

Participants Experiments have been carried out with a
group of 38 volunteers with an average age of 21.34 and the
standard deviation of 3.45. The age distribution is plotted
in Figure 3. The participants are students and faculties
from our university, ranging from first-year undergraduate
to associate professors. The distribution of shoe sizes and
male/female is presented in Table 2. Participants involved
in the stage of data collection are not recruited for latter
validation studies.

Each participant is asked to rate their familiarity of Vir-
tual Reality from 1 to 5 (Table 1). The average score for
such familiarity is 2.28, with the SD of 0.82. We believe
this group of participants is appropriate for this task, since
they have moderate understanding and experience of VR
applications, but not influenced by the conventional tech-
niques of VR interaction. All experiments were approved by
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the Research Ethics Committee Panel at Software School,
Xiamen University. Written consent was obtained from each
subject after explanation of the experiment.

Score  Description of Criteria
1 Never heard of VR concept/application/device
2 Have heard of VR but no hands-on experience
3 Have hands-on VR experience (<= 2 times)
4 Have hands-on VR experience (> 2 times)
5 Experienced user of VR applications, or engaged

in related development and research

Table 1: Questionnaire of user familiarity of interactive VR
applications.

Procedures Fach participant performs eight activities
(standing, real walking, walking-in-place, walking backward,
running, jumping, sliding left and right) wearing the smart
insoles and the VR helmet. The helmet displays a virtual
environment of an open square which allows users to navigate
around. At the beginning of the experiments, participants
are informed of the experiment purpose. Participants are
presented with a virtual scene which guides them to perform
each activity individually. The activities are performed in
short duration (10 seconds) with repeated attempts. Partici-
pants are instructed to familiarize themselves with the system
before the start of data collection. This pre-collection step
costs around 2 minutes. The capture process is conducted in
a sufficiently large space, which allows the users to perform
these activities in a non-stop attempt. A timer is presented
to the participant on the VR screen, informing him/her the
elapsed time since the start of the current capture session.
A participant is free to terminate the capture process at any
time if he or she feels tired. Participants are given sufficient
rest time during collection sessions. The collected data from
each session are automatically uploaded to our server and
manually annotated with the corresponding gesture label.
The complete collection for each user costs around one hour,
including the rest time for participants.

4.2 The standard LSTM Classifier

Data Processing For each participant, we normalize the
corresponding data with the maximal sensor-specific pressure
value in the collection dataset for individual participants.
This technique is designed to neutralize the effect of different
body weights of users. Our method works directly with noisy
input and no filtering is required for the collected data. After

Authorized licensed use limited to: University of Waterloo. Downloaded on April 21,2023 at 02:59:14 UTC from IEEE Xplore. Restrictions apply.



5 Training session's progress over iterations
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(a) Training session’s progress over iterations
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Figure 4: Results from training the standard LSTM classifier (sequence size S=100, equivalently 2 seconds). (a) Losses and
accuracies for both training and testing dataset. (b) Normalized confusion matrix for the selected behavior patterns.

Shoe Size Num. of Num. of Total
(US) Participants Female Duration

6 13 13 699.5

7.5 12 7 714.45

8.5 13 0 780.5

Table 2: Number of participants and length of durations
in the process of data collection. The unit of duration is
minutes in the collected dataset.

Pattern Num. of Num of
testing samples  training samples

standing 2724 14580
real walking 2241 11481
walking in place 2709 13656
walking backward 2790 13371
jumping 2712 13863
running 2724 13437
sliding left 2850 15195
sliding right 2847 14487
total 21597 110070

Table 3: Statistics of selected foot patterns in testing and
training datasets. All data are provided as the supplementary
file of this publication.

that, the time-series data are divided into samples, each of
size N x S, where N is the number of sensors and S is the
sequence size of each sensor signal. It is worth noting that
the sequence size S critically affects the prediction accuracy.
Multiple sequences sizes, between 10 to 100, are tested in
our method (see detailed analysis in Section 6.2).

The complete dataset has been randomly partitioned into
two sets on the level of individual participants. For shoe sizes
of 6, 7.5, 8.5, 11, 10, 11 participants respectively are selected
as the training data and the rest participants as the testing
data. The separation between training and testing datasets
on the individual level allows us to prove the effectiveness of
our classifier in extension to individuals who are not included
in the session of data collection. The statistics of the collected
database are presented in Table 3.

Training the Standard LSTM Classifier Long Short-Term
Memory (LSTM) is an improved sub-category of Recurrent
Neural Network and could avoid the problem of vanishing
gradient at small computational extra-costs. The LSTM
network takes a sample matrix X of size N (6 sensors) xS
(sequence size of each sensor signal), as input, and outputs
corresponding inference gesture label vector Y (7 kinds of
gestures). The network model has 3 LSTM layers, each of
64 hidden units, with 1 softmax layer as the output. The
network loss function is defined as:

L=Y Y, &)
where Y, is the prediction from the network. We use the
Adam Optimizer with the learning rate of 0.0025, the batch
size of 1500. Compared with conventional methods in classifi-
cation of time-series data like Hidden Markov Model (HMM)
and Dynamic Time Warping (DTW), we do not require man-
ual feature engineering and avoid the problem of user-specific
parameters. Further comparison with existing classification
methods can be found in Section 6.2.

Figure 4a shows the loss and accuracy for both training and
testing datasets. The learning fast converges to an optimal
solution after 1000 iterations and reaches an accuracy of 70%,
taking around 20 minutes. As the learning progresses, the
final accuracy reaches over 85% for both training and testing

182

Authorized licensed use limited to: University of Waterloo. Downloaded on April 21,2023 at 02:59:14 UTC from IEEE Xplore. Restrictions apply.



datasets. The result shows that the accuracy of the testing
dataset is close to the training dataset, which implies that the
problem of over-fitting is avoided and our method is capable
of generalizing to variations from individual users.

Figure 4b shows the normalized confusion matrix of dif-
ferent behavior patterns with a sequence size of 100 (2 sec-
onds). The result shows that the action of walking forward
(walking-in-place) is recognized with the lowest accuracy of
77%. Walking forward is incorrectly labeled as standing (7%)
and walking backward (5%). This error is caused by the sim-
ilarity of these foot patterns. It is worth noting that when
real-walking is adopted for walking forward, the accuracy
is improved to 81%. Real walking allows users to lift off
their feet for an extended duration of time and thus reduces
the possibility of mis-labeling as standing. Meanwhile, the
patterns of standing, walking backward and sliding left/right
are recognized with rather high accuracy of over 85%. The
accuracy is further improved with the novel DCTC method
proposed in the following paragraphs.

4.3 Dual-Check Till Consensus

Standard LSTM can classify the motion patterns with an
accuracy of ~80% given a large sequence of data (2 sec-
onds) (Figure 4). This indicates that the algorithm can only
correctly identify the pattern of jumping possibly after the
jumping is finished. This latency could critically lead to
negative user experiences. We propose a novel method, Dual-
Check Till Consensus (DCTC) (Figure 5), to fast predict the
pattern label while improving the accuracy performance.

Our initial observation is that the forward computation
of LSTM model is efficient (less than 1 millisecond). Based
on such an observation, we apply an iterative procedure to
compare the predictions Y using the samples of sequence
duration of both T and T+dT.

T,Y = arg(< YZ; >=< Yg+5T >)
.Y

(2)

We here define the operator = as the identification of the first
element-wise equality in two vectors < Y;"; >, < Yg"'éT >.

3)

Therefore, we are searching for a pair of parameters 7,Y,
which leads to the first-time equality of two predictions
YZ;,Y?HST, T starts from the smallest segment of 0.1 sec-
ond and increases to 1 second, while 6T is 0.1 second. If
the predictions from both samples reach the consensus, the
algorithm returns this result; otherwise, T is increased until
the consensus is made or the maximum value of T is reached.
For the latter case, the pattern with the highest probability
in previous predictions is selected.

If we assume the probability distribution of the standard
LSTM network as P(Y|X), the probability P* from our
DCTC method is:

<Y, >=UY}, t€[0,7]

T

P (Y[Xy, Xpyor) = 1= [ [(1 = P(Y|X)P(Y[Xi151))
t=0

(4)
This indicates that increasing the variable T leads to a
higher prediction accuracy, or clamping the accuracy with a
lower threshold reduces the timecost for iterative verification.
We train both the standard LSTM and DCTC classifiers
for each shoe size, and the general shoe size (Table 4). The
results show that the proposed DCTC method increases the
accuracy by at least 10%, in comparison to the standard
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Figure 5: Flowchart of our DCTC algorithm.

LSTM method. To reach an accuracy of 95%, the proposed
DCTC method only requires the sequence duration of 0.5
seconds. This is significantly reduced in comparison to the
sequence duration of 2 seconds of the standard LSTM method
(only achieving an accuracy below 85%). The performance
advantage is analyzed in detail, in comparison to the LSTM,
HMM, DTW methods (see Section 6.2)).

Additionally, the results (Table 4) show that training the
individual classifier achieves better accuracy, over the general
classifier. The sensitivity to shoe sizes is potentially caused
by male/female distribution (Table 2). The factor of gender
has been reported to cause a difference in plantar pressure
[48]. We draw a conclusion that using the corresponding
classifier for a specific shoe size is a direct solution to raise
the accuracy. As everyone is aware of his/her own shoe size,
users are prompted to provide their shoe size when they use
this application for the first time. The file size of the network
model is around 9 megabytes, which is sufficiently small to
be downloaded from the remote server.

Shoe Size (US) LSTM DCTC
6 0.83 0.97
7.5 0.84 0.94
8.5 0.83 0.96
General 0.78 0.88

Table 4: Accuracy for training the individual classifier for
different shoe sizes and a general classifier for all shoe sizes.

5 Validation in Real World

We conduct the validation experiment to evaluate the pro-
posed interaction technique of using foot gestures for virtual
locomotion, in particular, focusing on the actual recognition
accuracy and the latency of DCTC.
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Participants 10 volunteers (5 males and 5 females) with
an average age of 21.25 and SD of 3.54 are recruited in this
study. The average familiarity of VR (measured with Table 1)
is 2.50 and the an SD is 0.85 (Figure 6).

) Age and Familiarity of Participants4
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Figure 6: Age and familiarity score of participants in the
session of validation.

Procedures We develop the application on the VR helmet
with the Unity3D framework. The resultant animations are
predefined in Unity3D, making sure that validation results
are only relevant to the performance of the classification
model. A virtual track (Figure 7), with separate segments
indicating users to perform the corresponding patterns, is set
up to verify our hypothesis that the accuracy and latency
of DCTC are acceptable in real-world scenarios. The track
area is 86.4x52.8 square meters and the sequence of various
action prompts is randomly generated for each individual to
eliminate the influence of the order. In particular, 8 hurdles
are arranged (on the left side in Figure 7c) so that the
participant needs to jump over the hurdles consecutively. For
the segment of walking backward, the viewpoint is rotated
180 degrees so the virtual character walks backward and
returns to the starting point. The track begins at the red dot
in Figure 7c, and terminates at the same position. The room
in RW is sufficiently large to allow the participant to walk
backwards with no safety concern of object collision. In this
scenario, participants are free to choose either real walking
or walking-in-place on their own preference to achieve the
forward walking.

When running the real-time application, users are guided
to perform a few actions (walking-in-place, running-in-place
and jumping-in-place) before starting the main application.
At this stage, the algorithm estimates the ‘maximal’ pressure
value used for the purpose of weight normalization. These
parameters are dynamically updated as a user is engaging in
this application. Then, users will enter the track and perform
these series of gestures with smart insoles as interaction
technique with either LSTM or DCTC classification model
without knowing the exact classification algorithm. The same
procedure will be repeated with the other model (LSTM or
DCTC). All relevant data generated during this process are
recorded, including the outputs of the model as well as the
surveillance video.

Analysis  We collect the mis-labeled actions for each seg-
ment showing a mean accuracy of 82% for our DCTC method
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Figure 7: Interactive demo of navigating in a virtual track.

and 65% for standard LSTM. In more specific terms, the ac-
curacy of DCTC for jumping, running, walking forward and
backward, sliding left and right is 83%, 79%, 77%, 85%, 82%,
83%. The results show that gestures with the highest and
lowest recognition rates are walking backward and forward
respectively. This is consistent with the results shown in the
confusion matrix (Figure 4b). We notice that motions which
are unclear or vary considerably from the training samples
may lead to recognition failure. One example is that users
intend to jump, but without their feet fully off the ground.
However, this is a common weakness for pattern-recognition
models to classify ambiguous and challenging patterns. The
gap between the actual recognition rates and the theoretical
ones should also be attributed to the ‘maximal’ parameter
used for weight normalization. The only post-processing pro-
cedure when preparing the training data-set is to normalize
the data with the maximal sensor-specific value for individ-
ual participants. When running the real-time application,
users are guided to perform a few actions (walking-in-place,
running-in-place, and jumping-in-place) before starting the
main application. It is challenging to estimate such ‘maxi-
mal’ values within a short time interval, which reduces the
recognition accuracy of performed gestures. The problem of
body-weight-relevant parameter estimation is also observed
in [19]. However, it is worth noting that this problem is
part of the data pre-processing of the standard LSTM model,
while the major novelty of our work is the iterative approach
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to improve the standard one in terms of reducing latency
and increasing accuracy.

As for the latency, our DCTC model also distinctly out-
performs the standard LSTM. Most participants have com-
plained about the unacceptable delay in the process based
on the standard LSTM model, especially in the segment of
jumping. Nevertheless, some comments for DCTC are: "I
cannot feel the latency for most of the time". Our application
runs smoothly at an fps of 30.

6 Discussions
6.1 Comparison with Existing WIP Method

It is worth pointing out that the main purpose of this work
differs from existing works in walking-in-place, including
LLCM-WIP [17], GUD-WIP [64] and SAS-WIP [8]. These
existing methods are proposed to achieve walking-in-place
with the amplitude, speed or frequency of foot movements.
They differ from our work in the focus of controlling the
locomotion speed or achieving the minimal latency between
two states (start and stop). The goal of this work is to present
a classification strategy which is capable of handling so-far
the largest number of locomotion categories while adapting
to pattern variations of different participants.

Concerning the latency performance, the metrics of start-
ing and stopping latency of LLCM-WIP [17] which specifically
focuses on achieving low-latency interaction are 138 and 96
ms, less than 1/8 of a gait-cycle. In comparison, our method
requires more time (0.5 seconds) to detect the transition
between 7 categories. Despite the latency comparison, we
improve the standard LLCM method in two ways: 1) avoid
manual parameter adjustment, 2) address the pattern vari-
ations among different individuals. The implementation of
LLCM requires manual efforts of parameter adjustment, for
example the cutoff frequency of the low-pass filter, as a trade-
off between the smoothness of locomotion and low latency.
The original work of LLCM focuses on the transition (start,
stop) between two locomotion modes, and the challenge of
parameter adjustment grows exponentially (O(N?)) with the
number N of locomotion categories. The parameters are also
expected to vary across different participants, increasing the
complexity of the parameter setting. In contrast, our method
avoids the manual settings of parameter values and inherently
adapts to the variations across different individuals.

6.2 Accuracy and Timecost Comparison with Existing Ges-
ture Recognition Methods

The recognition algorithm is critical to correctly understand
human activity. So far, various methods have been proposed,
including Dynamic Time Warping (DTW) [32], Markov Mod-
els [9], Conditional Random Fields [7] and Deep Neural Net-
work (DNN) [70], etc. Conventional methods such as DTW
require feature selection by manually identifying contributing
features during training and thereby reducing computational
complexity during classification. Readers may refer to a
recent survey [24] for a tutorial on common techniques in
feature extraction.

Comparison with HMM  Hidden Markov Model (HMM) has
been widely used in the field of gesture recognition, achieving
over 90% success in KTH or Weizmann datasets [54] [65] [11]
[16]. Therefore, we compare with the HMM based approach
to model actions using a modified Motion History Images
(MHI) for feature extraction proposed by [3]. They report
99% success in Weizmann dataset. They modify the MHI by
replacing the linear decay factor with an exponential decay
factor emphasizing the recent motion more effectively so that

185

HMM models can achieve a better recognition accuracy. In
our implementation, MHI extracts the temporal features by
obtaining the difference between the current moment and the
previous moment and then computing the gradient direction.
The HMM model is defined by A= (A, B, 7) with N number of
states (in our problem, N=7). A is the transmission matrix,
B comprises of the probability distributions for a feature
vector extracted by MHI and 7 is the initial distribution. A
is trained for each motion categories separately using the
observation sequence, the pressure signals from our insoles,
with Baum and Welch algorithm. The Viterbi algorithm
calculates the probability of each sequence in the test set to
tell the final accuracy of this approach. After configuring
HMM models with different parameters of hidden states
(from 5 to 8) and training iteration (from 100 to 800), we
evaluate the results and finally set the hidden states to be 7
and the training iteration to be 500.

The time cost of one prediction is around 3 milliseconds.
The results show that the full-size dataset achieves the ac-
curacy around 75% while the datasets with sizes of 6, 7.5,
8.5 achieve the level around 83%, 79%, 81% respectively.
The results show that DCTC outperforms HMM in terms
of accuracy and capability of coping with noisy and sparse
sensor data.

Ratio of Timecost per
Complete Accuracy
Datasot sequence

DTW 100% 0.87 7585.13
DTW 50% 0.85 4021.45
DTW 25% 0.82 1936.34
DTW 12.5% 0.79 1013.11
DTW 5.0% 0.75 390.00
DTW 1.0% 0.57 77.55
DTW 0.5% 0.44 44.39
LSTM N/A 0.83 0.46
DCTC N/A 0.97 13.64

Table 5: Comparison of the accuracy and timecost for meth-
ods of DTW&KNN and our method on the dataset of shoe
size 8.5. Unit for the timecost is milliseconds and the se-
quence size is 100 for the standard LSTM and 25 for DCTC.

Comparison with DTW & KNN The combined recipe of
Dynamic Time Warping (DTW) and K Nearest Neighbors
(KNN) is a representative method in the domain of time-
series classification [32]. This method is offline but is capable
of achieving high accuracy given a large database. We use
this as a benchmark in terms of data size and accuracy.
The collected data is first processed by computing a vector
of [mean, median, max, min, standard deviation], given a
segment of sensor data. DTW aligns two vectors which are
originally out of phase, then computes the corresponding
distance between these aligned vectors. The label of the test
sequence is predicted by finding the closest neighbor (K=1)
in the training dataset. Research shows that this method
achieves satisfactory accuracy for the task of time series
classification [67]. However, this method is computationally
too demanding for real-time applications, as in our case.
One solution is to reduce the size of the dataset, which the
incoming sequence is compared against. We use the technique
of numerosity reduction [32,67] to reduce the dataset and
accelerate the computation process. The results show that
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Figure 8: Accuracy comparison of HMM, LSTM

although the full-size dataset achieves the accuracy around
90% (Table 5), each attempt to find the closest neighbor in
the dataset costs >7 seconds. When reducing the dataset to
speed up the computation, the accuracy drops significantly.
Using a larger number of features may potentially increase the
accuracy but definitely lead to an explosion of the computing
timecost. In comparison, our method achieves an accuracy
rate of 83% at the cost of 0.46 milliseconds, in comparison to
82% at the cost of 2 seconds for the method of DTW&KNN
when the dataset is maintained at 25%. This shows that the
classifier built by our LSTM model captures the patterns
embedded in the large dataset, thus can successfully detect
the motion pattern without the need to individually compare
against the samples in the complete database.

Timecost Comparison Different sequence sizes critically
affect the computation load and accuracy of the neural net-
work. For the standard LSTM method, the timecost increases
from less than 0.1 to 0.6 millisecond when the sequence size
increases from 10 (0.2 seconds) to 100 (2 seconds) (Figure 9).
The accuracy rate improves significantly from 50% to over
80% as the sequence size increases from 10 to 100 (Figure 8).
This indicates a longer sequence of data signal allows the clas-
sifier to better understand the embedded pattern and make
the correct recognition. However, it is worth noting that it
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requires the sequence size to be over 75 (1.5 seconds, times
with the sampling frequency of 50 Hz.) in order to reach an
accuracy of 80%. Our proposed method, DCTC, improves
the standard LSTM model by significantly shortening this
time latency and increasing the accuracy rate. Meanwhile, we
found out that timecost of HMM is not significantly affected
by the sequence size, though its accuracy improves when the
sequence size increases.

With our iterative process in DCTC, the timecost increases
10 times as the standard LSTM model. However, the maxi-
mal timecost is around 15 milliseconds (Figure 8c), still far
less than the time gap between two data transmission (0.1
second). Meanwhile, the accuracy improves significantly for
smaller segments of sequences. A sequence size of 15 (0.3
seconds) can achieve an accuracy of 85.3% (Figure 8d), which
is a comparable performance to the best accuracy from the
standard LSTM model. Furthermore, a sequence size of 25
improves the accuracy to 97.1%. This indicates that for
most cases, the algorithm can produce the consensus of the
predictions within a time window significantly smaller than
the maximum sequence size (100).

6.3 Limitations and Future Work

In this section, we present the limitations of our work and
directions for future research. We also discuss the lessons
and insights we learned from our experience.

The limitation of our work is rooted in its reliance on
building the training dataset. The process of data collection
can be accelerated by simultaneously capturing the pressure
with our system and gesture with cameras, so the mapping
between the pressure and gesture can be built automatically.

We notice that some users hold the headset with their
hands (Figure 7a) while some don’t (Figure 1 and Figure 2).
Recorded videos also reveal that users even dynamically
change this holding style (with both hands, just one hand
or no hands). We think it is a personal habit since we
did not give explicit instructions to users in this regard.
This holding style may affect their body balance and thus
gesture patterns, but constraining users to a specific style
may introduce intervention to user consciousness and affect
their sense of immersion. This interesting question requires
our future investigation.

For future works, we are developing an intelligent classifier
which adapts to a specific user and insoles. Using the cur-
rent classifier as an initial template, we plan to continuously
collect the data flow of the specific user and insoles, and
incrementally improve the accuracy of classification. This
strategy is promising in completely removing the variations
in inter-person patterns and sensor specifics. We expect to
achieve a considerably high accuracy of pattern recognition
and plan to extend the pattern repertoire to include daily
and athletic movements. One fact which is worth noting
is that all the subjects in this study are mostly under 30
and in good health. This technique may benefit a broader
range of population, including kids, elderly and people with
upper body disability. This could lead to a higher impact
on these under-represented groups. Another future direc-
tion is posture reconstruction based on the information of
plantar pressure. We hypothesize that the body posture,
in particular, the lower-body posture, critically determines
the pressure distribution on the feet, which could be used
to reversely infer the current posture. This can be used to
track the body movement when the user is wearing the smart
insole, and be used in applications including rehabilitation,
interaction games etc. However, the technical challenge lies
in constructing the mapping from the limited, noisy and
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sparse pressure information to the high-dimensional body
configuration.

7 Conclusion

Our work uses foot patterns as the interaction mode for lo-
comotion in a virtual environment. The proposed method,
DCTC, can accurately classify user activities into seven cate-
gories: standing, walking forward/backward, running, jump-
ing, sliding left/right. The main contribution of this work
is the capability of accurate and fast classification of foot
patterns with noisy and sparse inputs. We conducted ex-
periments and showed that using foot patterns can provide
intuitive interaction for VR applications.
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